Verbindlich ist allein die amtlich veröffentlichte Version

Fachprüfungs- und Studienordnung für den gemeinsamen Masterstudiengang Biomassetechnologie der Technischen Universität München (TUM) und der Universität für Bodenkultur Wien (BOKU)

Vom 25. Oktober 2017

Lesbare Fassung in der Fassung der 3. Änderungssatzung vom 2. Dezember 2021

Aufgrund von Art. 13 Abs. 1 Satz 2 in Verbindung mit Art. 58 Abs. 1 Satz 1, Art. 61 Abs. 2 Satz 1 sowie Art. 43 Abs. 5 des Bayerischen Hochschulgesetzes (BayHSchG) erlässt die Technische Universität München folgende Satzung:

Präambel

¹Der Masterstudiengang Biomassetechnologie ist ein gemeinsamer Studiengang (Joint Degree) der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit, D, und der Universität für Bodenkultur Wien, A.

²Der Masterstudiengang Biomassetechnologie ist ein interdisziplinärer Masterstudiengang für qualifizierte Studierende mit Bachelorabschlüssen in den Natur- und Ingenieurwissenschaften. ³Er bietet die Möglichkeit einer fundierten Ausbildung auf dem Gebiet der Biomasseproduktion, -nutzung und -verwertung.

⁴Der Studiengang richtet sich an Studierende mit einem sehr hohen Leistungspotential, Einsatzwillen und einem breiten Interessenfeld. ⁵Die interdisziplinären Lehrangebote sind wesentliche Elemente des Studiengangs. ⁶Das Ziel des Masterstudiengangs Biomassetechnologie ist die Wertschöpfungskette von der nachhaltigen Produktion nachwachsender Rohstoffe zur technologischen Nutzung und -verwertung von Biomasse abzudecken. ⁷Unter dem Begriff Biomasse wird die stoffliche Masse aller Lebewesen (Tiere, Pflanzen, Algen, Pilze und Bakterien) oder Teilen davon verstanden. ⁸Der Studiengang vermittelt die grundlegenden und wissenschaftlichen Inhalte zu den relevanten chemisch-stofflichen, den werkstofflichen und den energetischen Technologien zur Aufbereitung und Verwertung von Biomasse unter den fachspezifischen Gesichtspunkten. ⁹Darüber hinaus werden auch wirtschaftliche Fragen, ökologische und Nachhaltigkeitsaspekte zur Nutzung und Verwertung von Biomasse sowie ihrer Erzeugung behandelt.

¹⁰Durch die enge Verbindung der grundlagen- und technologieorientierten Forschung und Lehre der Technischen Universität München und der Universität für Bodenkultur Wien ergibt sich für die Studierenden ein optimal abgestimmtes Lehrangebot.

Inhaltsverzeichnis:

§ 34 § 35	Geltungsbereich, akademischer Grad Studienbeginn, Regelstudienzeit, ECTS
•	Qualifikationsvoraussetzungen
§ 37	Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen Unterrichtssprache
§ 38	Prüfungsfristen, Studienfortschrittskontrolle, Fristversäumnis
§ 39	Prüfungsausschuss
§ 40	Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen
§ 41	Studienbegleitendes Prüfungsverfahren, Prüfungsformen
§ 42	Anmeldung und Zulassung zur Masterprüfung
§ 43	Umfang der Masterprüfung
§ 44	Wiederholung, Nichtbestehen von Prüfungen
§ 45	Studienleistungen
§ 45 a	Multiple-Choice-Verfahren
§ 46	Master's Thesis
§ 47	Bestehen und Bewertung der Masterprüfung
	Zeugnis, Urkunde, Diploma Supplement
§ 49	In-Kraft-Treten

Anlage 1: Prüfungsmodule Anlage 2: Eignungsverfahren Anlage 3: Äquivalenzliste

§ 34 Geltungsbereich, akademischer Grad

- (1) ¹Die Fachprüfungs- und Studienordnung (FPSO) für den gemeinsamen Masterstudiengang Biomassetechnologie der Technischen Universität München und der Universität für Bodenkultur Wien ergänzt die Allgemeine Prüfungs- und Studienordnung für Bachelor- und Masterstudiengänge an der Technischen Universität München (APSO) vom 18. März 2011. ²Die APSO hat Vorrang.
- (2) Aufgrund der bestandenen Masterprüfung verleihen die Technische Universität München und die Universität für Bodenkultur Wien gemeinsam den akademischen Grad "Master of Science" ("M.Sc.").

§ 35 Studienbeginn, Regelstudienzeit, ECTS

- (1) ¹Studienbeginn für den gemeinsamen Masterstudiengang Biomassetechnologie an der Technischen Universität München und der Universität für Bodenkultur Wien ist sowohl im Wintersemester als auch im Sommersemester möglich. ²Er kann entweder an der Technischen Universität München oder der Universität für Bodenkultur Wien aufgenommen werden.
- (2) ¹Der Umfang der für die Erlangung des Mastergrades erforderlichen Credits im Pflicht- und Wahlbereich beträgt 90 (70 Semesterwochenstunden), verteilt auf drei Semester, wobei sowohl an der Technischen Universität München als auch an der Universität für Bodenkultur Wien mindestens ein Semester erfolgreich absolviert werden muss. ²Hinzu kommen maximal sechs Monate für die Durchführung der Master's Thesis gemäß § 46 (30 Credits). ³Der Umfang der zu erbringenden Prüfungsleistungen im Pflicht- und Wahlbereich gemäß Anlage Prüfungsmodule im gemeinsamen Masterstudiengang Biomassetechnologie beträgt damit mindestens 120 Credits. ⁴Die Regelstudienzeit für das Masterstudium beträgt insgesamt vier Semester.

§ 36 Qualifikationsvoraussetzungen

- (1) Die Qualifikation für den gemeinsamen Masterstudiengang Biomassetechnologie wird nachgewiesen durch
 - einen an einer in- oder ausländischen Universität erworbenen mindestens sechssemestrigen qualifizierten Bachelorabschluss oder mindestens gleichwertigen Abschluss in Studiengängen aus natur-, ingenieur-, agrar-, forstwissenschaftlichen oder vergleichbaren Studiengängen,
 - 2. hinreichend deutsche Sprachkenntnisse gemäß § 7 Abs. 4 Nr. 9 der Satzung der Technischen Universität München über die Immatrikulation, Rückmeldung, Beurlaubung und Exmatrikulation (ImmatS) vom 9. Januar 2014 in der jeweils geltenden Fassung oder adäquate Kenntnisse der englischen Sprache; hierzu ist von Studierenden, deren Ausbildungssprache nicht Englisch ist, der Nachweis durch einen anerkannten Sprachtest wie den "Test of English as a Foreign Language" (TOEFL) (mindestens 88 Punkte), das "International English Language Testing System" (IELTS) (mindestens 6,5 Punkte) oder die "Cambridge Main Suite of English Examinations" zu erbringen; wurden in dem grundständigen Studiengang Prüfungen im Umfang von 10 Credits in englischsprachigen Prüfungsmodulen erbracht oder wurde die Abschlussarbeit in englischer Sprache verfasst, so sind hiermit ebenfalls adäquate Kenntnisse der englischen Sprache nachgewiesen,
 - 3. das Bestehen des Eignungsverfahrens gemäß Anlage 2.

- (2) Ein im Sinne von Abs. 1 Nr. 1 qualifizierter Hochschulabschluss liegt vor, wenn keine wesentlichen Unterschiede hinsichtlich der in den wissenschaftlich orientierten einschlägigen, in Abs. 1 Nr. 1 genannten Bachelorstudiengängen der Technischen Universität München und der Universität für Bodenkultur Wien oder mit einem vergleichbaren Abschluss erworbenen Kompetenzen (Lernergebnissen) bestehen und diese den fachlichen Anforderungen des gemeinsamen Masterstudiengangs entsprechen.
- (3) ¹Zur Feststellung nach Abs. 2 werden die Pflichtmodule der Bachelorstudiengänge der Technischen Universität München herangezogen. ²Fehlen zu dieser Feststellung Prüfungsleistungen, so kann die Auswahlkommission nach Anlage 2 Nr. 3 fordern, dass zum Nachweis der Qualifikation nach Abs. 1 diese Prüfungen als zusätzliche Grundlagenprüfungen gemäß Anlage 2 Nr. 5.1.3 abzulegen sind. ³Die Studienbewerber und Studienbewerberinnen sind hierüber nach Sichtung der Unterlagen im Rahmen der ersten Stufe des Eignungsverfahrens zu informieren.

§ 37 Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen, Unterrichtssprache

- (1) ¹Generelle Regelungen zu Modulen und Lehrveranstaltungen sind in den §§ 6 und 8 APSO getroffen. ²Bei Abweichungen zu Modulfestlegungen gilt § 12 Abs. 8 APSO.
- (2) Der Studienplan mit den Modulen im Pflicht-und Wahlbereich ist in der Anlage 1 aufgeführt.
- (3) ¹Im Umfang von mindestens 42 Credits haben Studierende mit einem Mentor oder einer Mentorin einen individuellen Studienplan zu erstellen. ²Die entsprechenden Module sind aus der Anlage 1 auszuwählen. ³Zum Mentor oder zur Mentorin kann jede gemäß der Hochschulprüferverordnung prüfungsberechtigte Person des Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit der Technischen Universität München und der Universität für Bodenkultur Wien bestellt werden.
- (4) ¹Im Masterstudiengang Biomassetechnologie können folgende Schwerpunkte gewählt werden:
 - Nachwachsende Rohstoffe und Anbausysteme
 - Energetische Nutzung von Biomasse
 - Chemisch-werkstoffliche Nutzung von Biomasse
 - Ökonomie Nachwachsender Rohstoffe

²Ein Schwerpunkt gilt als belegt, wenn mindestens 30 Credits aus einem der oben genannten Schwerpunkte nachgewiesen wurden und darin zusätzlich die Master's Thesis angefertigt wurde.
³Bei erfolgreicher Belegung eines Schwerpunkts wird dieser im Transcript of Records genannt.
⁴Werden die Kriterien aus Satz 2 nicht erfüllt, gilt kein Schwerpunkt als belegt und die Nennung eines Schwerpunkts im Transcript of Records entfällt.

(5) ¹Neben den deutschsprachigen Modulen werden ausreichend Module in englischer Sprache angeboten. ²Es besteht daher die Möglichkeit, den Masterstudiengang ausschließlich in englischer Sprache zu studieren. ³Sofern Studierende bei der Bewerbung keine Deutschkenntnisse nachgewiesen haben, wird in der Zulassung die Auflage ausgesprochen, dass bis zum Ende des zweiten Fachsemesters mindestens ein Modul erfolgreich abzulegen ist, in dem integrativ Deutschkenntnisse erworben werden. ⁴Das Angebot wird vom Prüfungsausschuss ortsüblich bekannt gegeben. ⁵Freiwillig erbrachte außercurriculare Angebote wie z.B. Deutschkurse des TUM Sprachenzentrums werden ebenfalls anerkannt. ⁶Die Sprache der jeweiligen Pflichtmodule ist in Anlage 1 gekennzeichnet.

- (1) Prüfungsfristen, Studienfortschrittskontrolle und Fristversäumnis sind in § 10 APSO geregelt.
- (2) ¹Mindestens eine der im Anhang 1 aufgeführten Modulprüfungen aus den Grundlagen (Pflichtmodule) muss bis zum Ende des zweiten Semesters erfolgreich abgelegt werden. ²Bei Fristüberschreitung gilt § 10 Abs. 5 APSO.

§ 39 Prüfungsausschuss

¹Die für Entscheidungen in Prüfungsangelegenheiten zuständige Stelle gemäß § 29 APSO ist der Masterprüfungsausschuss des Studiengangs Biomassetechnologie (Joint Management Comittee). ²Der Masterprüfungsausschuss (Prüfungsausschuss) besteht aus sechs Mitgliedern. ³Dabei gehören dem Prüfungsausschuss aus

- a) dem TUM Campus Straubing für Biotechnologie und Nachhaltigkeit,
- b) der Universität für Bodenkultur Wien

jeweils drei Vertreter oder Vertreterinnen an. ⁴Das vorsitzende Mitglied wird von der Technischen Universität München und das stellvertretende, vorsitzende Mitglied wird von der Universität für Bodenkultur Wien gestellt.

§ 40 Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen

Die Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen regelt § 16 APSO.

§ 41 Studienbegleitendes Prüfungsverfahren, Prüfungsformen

- (1) Mögliche Prüfungsformen gemäß §§ 12 und 13 APSO sind neben Klausuren und mündlichen Prüfungen in diesem Studiengang insbesondere Laborleistungen, Übungsleistungen (ggf. Testate), Berichte, Projektarbeiten, Präsentationen und wissenschaftliche Ausarbeitungen.
 - a) ¹Eine **Klausur** ist eine schriftliche Arbeit unter Aufsicht mit dem Ziel, in begrenzter Zeit mit den vorgegebenen Methoden und definierten Hilfsmitteln Probleme zu erkennen und Wege zu ihrer Lösung zu finden und ggf. anwenden zu können. ²Die Dauer von Klausurarbeiten ist in § 12 Abs. 7 APSO geregelt.
 - b) ¹Laborleistungen beinhalten je nach Fachdisziplin Versuche, Messungen, Arbeiten im Feld, Feldübungen etc. mit dem Ziel der Durchführung, Auswertung und Erkenntnisgewinnung.
 ²Bestandteil können z.B. sein: die Beschreibung der Vorgänge und die jeweiligen theoretischen Grundlagen inkl. Literaturstudium, die Vorbereitung und praktische Durchführung, ggf. notwendige Berechnungen, ihre Dokumentation und Auswertung sowie die Deutung der Ergebnisse hinsichtlich der zu erarbeitenden Erkenntnisse.
 ³Die Laborleistung kann durch eine Präsentation ergänzt werden, um die kommunikative Kompetenz bei der Darstellung von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen.
 ⁴Die konkreten Bestandteile der jeweiligen Laborleistung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
 - c) ¹Die **Übungsleistung (ggf. Testate)** ist die Bearbeitung von vorgegebenen Aufgaben (z.B. mathematischer Probleme, Programmieraufgaben, Modellierungen etc.) mit dem Ziel der Anwendung theoretischer Inhalte zur Lösung von anwendungsbezogenen Problemstellungen. ²Sie dient der Überprüfung von Fakten- und Detailwissen sowie dessen

Anwendung. ³Die Übungsleistung kann u.a. schriftlich, mündlich oder elektronisch durchgeführt werden. ⁴Mögliche Formen sind bspw. Hausaufgaben, Übungsblätter, Programmierübungen, (E-)Tests, Aufgaben im Rahmen von Hochschulpraktika etc. ⁵Die konkreten Bestandteile der jeweiligen Übungsleistung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.

- d) ¹Ein **Bericht** ist eine schriftliche Aufarbeitung und Zusammenfassung eines Lernprozesses mit dem Ziel, Gelerntes strukturiert wiederzugeben und die Ergebnisse im Kontext eines Moduls zu analysieren. ²In dem Bericht soll nachgewiesen werden, dass die wesentlichen Aspekte erfasst wurden und schriftlich wiedergegeben werden können. ³Mögliche Berichtsformen sind bspw. Exkursionsberichte, Praktikumsberichte, Arbeitsberichte etc. ⁴Der schriftliche Bericht kann durch eine Präsentation ergänzt werden, um die kommunikative Kompetenz bei der Darstellung der Inhalte vor einer Zuhörerschaft zu überprüfen.
- e) ¹Im Rahmen einer **Projektarbeit** soll in mehreren Phasen (Initiierung, Problemdefinition, Rollenverteilung, Ideenfindung, Kriterienentwicklung, Entscheidung, Durchführung, Präsentation, schriftliche Auswertung) ein Projektauftrag als definiertes Ziel in definierter Zeit und unter Einsatz geeigneter Instrumente erreicht werden. ²Zusätzlich kann eine Präsentation Bestandteil der Projektarbeit sein, um die kommunikative Kompetenz bei der Darstellung von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. ³Die konkreten Bestandteile der jeweiligen Projektarbeit und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt. ⁴Die Projektarbeit ist auch in Form einer Gruppenarbeit möglich. ⁵Hierbei soll nachgewiesen werden, dass Aufgaben im Team gelöst werden können. ⁶Der als Prüfungsleistung jeweils zu bewertende Beitrag muss deutlich individuell erkennbar und bewertbar sein. ⁷Dies gilt auch für den individuellen Beitrag zum Gruppenergebnis.
- f) ¹Die wissenschaftliche Ausarbeitung ist eine schriftliche Leistung, in der eine anspruchsvolle wissenschaftliche bzw. wissenschaftlich-anwendungsorientierte Fragestellung mit den wissenschaftlichen Methoden der jeweiligen Fachdisziplin selbstständig bearbeitet wird. ²Es soll nachgewiesen werden, dass eine den Lernergebnissen des jeweiligen Moduls entsprechende Fragestellung unter Beachtung der Richtlinien für wissenschaftliches Arbeiten vollständig bearbeitet werden kann von der Analyse über die Konzeption bis zur Umsetzung. ³Mögliche Formen, die sich in ihrem jeweiligen Anspruchsniveau unterscheiden, sind z.B. Thesenpapier, Abstract, Essay, Studienarbeit, Seminararbeit etc. ⁴Die wissenschaftliche Ausarbeitung kann durch eine Präsentation und ggf. ein Kolloquium begleitet werden, um die kommunikative Kompetenz des Präsentierens von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. ⁵Die konkreten Bestandteile der jeweiligen wissenschaftlichen Ausarbeitung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
- g) ¹Eine **Präsentation** ist eine systematische, strukturierte und mit geeigneten Medien (wie Beamer, Folien, Poster, Videos) visuell unterstützte mündliche Darbietung, in der spezifische Themen oder Ergebnisse veranschaulicht und zusammengefasst sowie komplexe Sachverhalte auf ihren wesentlichen Kern reduziert werden. ²Mit der Präsentation soll die Kompetenz nachgewiesen werden, sich ein bestimmtes Themengebiet in einer bestimmten Zeit so zu erarbeiten, dass es in anschaulicher, übersichtlicher und verständlicher Weise einem Publikum präsentiert bzw. vorgetragen werden kann. ³Außerdem soll nachgewiesen werden, dass in Bezug auf das jeweilige Themengebiet auf Fragen, Anregungen oder Diskussionspunkte des Publikums sachkundig eingegangen werden kann. ⁴Die Präsentation kann durch eine kurze schriftliche Aufbereitung ergänzt werden. ⁵Die Präsentation kann als Einzel- oder als Gruppenleistung durchgeführt werden. ⁶Der als Prüfungsleistung jeweils zu bewertende Beitrag muss deutlich individuell erkennbar und bewertbar sein. ⁷Dies gilt auch für den individuellen Beitrag zum Gruppenergebnis.
- h) ¹Eine **mündliche Prüfung** ist ein zeitlich begrenztes Prüfungsgespräch zu bestimmten Themen und konkret zu beantwortenden Fragen. ²In mündlichen Prüfungen soll nachgewiesen werden, dass die in den Modulbeschreibungen dokumentierten

Qualifikationsziele erreicht wurden sowie die Zusammenhänge des Prüfungsgebietes erkannt wurden und spezielle Fragestellungen in diese Zusammenhänge eingeordnet werden können.
³Die mündliche Prüfung kann als Einzelprüfung oder als Gruppenprüfung durchgeführt werden.
⁴Die Dauer der Prüfung ist in § 13 Abs. 2 APSO geregelt.

- (2) ¹Die Prüfungen werden in der Regel studienbegleitend abgelegt. ²Art und Dauer einer Modulprüfung gehen aus der Anlage Prüfungsmodule hervor. ³Bei Abweichungen von diesen Festlegungen ist § 12 Abs. 8 APSO zu beachten. ⁴Für die Bewertung der Modulprüfung gilt § 17 APSO. ⁵Die Notengewichte von Modulteilprüfungen entsprechen den ihnen in der Anlage Prüfungsmodule zugeordneten Gewichtungsfaktoren.
- (3) Ist in der Anlage 1 für eine Modulprüfung angegeben, dass diese schriftlich oder mündlich ist, so gibt der oder die Prüfende spätestens zu Vorlesungsbeginn in geeigneter Weise den Studierenden die verbindliche Prüfungsart bekannt.
- (4) Auf Antrag der Studierenden und mit Zustimmung der Prüfenden können bei deutschsprachigen Modulen Prüfungen in englischer Sprache abgelegt werden.

§ 42 Anmeldung und Zulassung zur Masterprüfung

- (1) Mit der Immatrikulation in den gemeinsamen Masterstudiengang Biomassetechnologie gelten Studierende zu den Modulprüfungen der Masterprüfung als zugelassen.
- (2) ¹Die Anmeldung zu einer Modulprüfung im Pflicht- und Wahlbereich regelt § 15 Abs. 1 APSO. ²Die Anmeldung zu einer entsprechenden Wiederholungsprüfung in einem nicht bestandenen Pflichtmodul regelt § 15 Abs. 2 APSO.

§ 43 Umfang der Masterprüfung

- (1) Die Masterprüfung umfasst:
 - 1. die Modulprüfungen in den entsprechenden Modulen gemäß Abs. 2,
 - 2. die Master's Thesis gemäß § 46.
- (2) ¹Die Modulprüfungen sind in der Anlage Prüfungsmodule aufgelistet. ²Es sind 32 Credits in den Pflichtmodulen und 46 Credits in Wahlmodulen zu erbringen. ³Zusätzlich sind insgesamt 12 Credits aus allgemeinen Wahlmodulen, also Module aus dem gesamten Angebot der Technischen Universität München und/oder dem gesamten Angebot der Universität für Bodenkultur Wien zu erbringen. ⁴Aus dem Lehrangebot sind mindestens 10 Credits in fremdsprachigen Lehrveranstaltungen zu erbringen. ⁵Bei der Wahl der Module ist § 8 Abs. 2 APSO zu beachten.
- (3) Wird ein Studienschwerpunkt gewählt, so sind mindestens 30 Credits aus diesem Bereich in Wahlmodulen oder -veranstaltungen gemäß Anlage 1 zu erbringen, und die Master's Thesis muss mit einem Thema, das diesem Schwerpunkt zugeordnet werden kann, erstellt werden.

§ 44 Wiederholung, Nichtbestehen von Prüfungen

Die Wiederholung von Prüfungen ist in § 24 APSO geregelt.

(2) Das Nichtbestehen von Prüfungen regelt § 23 APSO.

§ 45 Studienleistungen

Neben den in § 43 Abs. 1 genannten Prüfungsleistungen sind im Masterstudiengang Biomassetechnologie keine Studienleistungen zu erbringen.

§ 45 a Multiple-Choice- Verfahren

Die Durchführung von Multiple-Choice-Verfahren ist in § 12 a APSO geregelt.

§ 46 Master's Thesis

- (1) ¹Gemäß § 18 APSO haben Studierende im Rahmen der Masterprüfung eine Master's Thesis anzufertigen. ²Die Master's Thesis wird gemeinsam von einem fachkundig Prüfenden der Technischen Universität München und der Universität für Bodenkultur Wien ausgegeben und betreut (Themensteller oder Themenstellerin). ³Die fachkundigen Prüfenden nach Satz 2 werden vom Prüfungsausschuss bestellt.
- (2) ¹Der Abschluss des Moduls Master's Thesis soll in der Regel die letzte Prüfungsleistung darstellen. ²Studierende können auf Antrag vorzeitig zum Modul Master's Thesis zugelassen werden, wenn das Ziel der Thesis im Sinne des § 18 Abs. 2 APSO unter Beachtung des bisherigen Studienverlaufs erreicht werden kann.
- (3) ¹Die Zeit von der Ausgabe bis zur Ablieferung der Master's Thesis darf sechs Monate nicht überschreiten. ²Die Master's Thesis gilt als abgelegt und nicht bestanden, soweit sie ohne gemäß § 10 Abs. 7 APSO anerkannte triftige Gründe nicht fristgerecht abgeliefert wird. ³Die Master's Thesis kann in deutscher oder englischer Sprache angefertigt werden.
- (4) ¹Falls die Master's Thesis nicht mit mindestens "ausreichend" (4,0) bewertet wurde, so kann sie einmal mit neuem Thema wiederholt werden. ²Sie muss spätestens sechs Wochen nach dem Bescheid über das Ergebnis erneut angemeldet werden.

§ 47 Bestehen und Bewertung der Masterprüfung

- (1) Die Masterprüfung ist bestanden, wenn alle im Rahmen der Masterprüfung gemäß § 43 Abs. 1 abzulegenden Prüfungen bestanden sind und ein Punktekontostand von mindestens 120 Credits erreicht ist.
- (2) ¹Die Modulnote wird gemäß § 17 APSO errechnet. ²Die Gesamtnote der Masterprüfung wird als gewichtetes Notenmittel der Module gemäß § 43 Abs. 2 und der Master's Thesis errechnet. ³Die Notengewichte der einzelnen Module entsprechen den zugeordneten Credits. ⁴Das Gesamturteil wird durch das Prädikat gemäß § 17 APSO ausgedrückt.

§ 48 Zeugnis, Urkunde, Diploma Supplement

- (1) ¹Über die bestandene Masterprüfung werden ein gemeinsames Zeugnis, ein Diploma Supplement sowie ein Transcript of Records ausgestellt, welche von dem oder der Vorsitzenden des Prüfungsausschusses unterzeichnet werden. ²Das Transcript of Records wird zudem vom Prüfungsamt der Technischen Universität München unterschrieben.
- (2) ¹Außerdem wird eine gemeinsame Urkunde über die Verleihung des akademischen Grades "Master of Science" ("M.Sc.") ausgestellt. ²Diese Urkunde wird von dem Präsidenten oder der Präsidentin der Technischen Universität München und von dem Präsidenten oder von der Präsidentin der Universität für Bodenkultur Wien unterzeichnet.

§ 49 In-Kraft-Treten*)

¹Diese Satzung tritt mit Wirkung vom 12. Mai 2017 in Kraft. ²Sie gilt für alle Studierenden, die ab dem Wintersemester 2017/2018 ihr Fachstudium an der Technischen Universität München aufnehmen.

*) Diese Vorschrift betrifft das In-Kraft-Treten der Satzung in der ursprünglichen Fassung vom 25. Oktober 2017. Der Zeitpunkt des In-Kraft-Tretens der Änderungen ergibt sich aus der Änderungssatzung.

Anlage 1: Prüfungsmodule TUM/BOKU*

Mindestens 10 Credits sind in fremdsprachigen Modulen oder Veranstaltungen abzulegen.

N	r.	Modul-	Lehrform	Sem.	SWS	Credits	Prüfungs-	Prüfungs-	Gewich-	Unter-
		bezeichnung					art	dauer	tungs-	richts-
									faktor	sprache

Pflichtmodule:

*Es muss mindestens ein Semester erfolgreich an der jeweiligen Partneruniversität (Technische Universität München bzw. Universität für Bodenkultur Wien) absolviert werden.

Eine Liste der äquivalenten Module ist in Anlage 3 aufgeführt.

Wer ein entsprechendes Modul an der TUM erfolgreich abgelegt hat, darf nicht die Veranstaltungen der BOKU belegen und umgekehrt.

Pflichtmodule der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit

Aus folgender Liste sind 32 Credits zu erbringen.

						140		Deutsch
	Gesamt:				32			
WZ1959	Masterseminar***	Ü	WiSe, SoSe	2 Ü	2	Präsen- tation		Deutsch/ Englisch
WZ1020	Nachwachsende Rohstoffe und Naturschutz	V	WiSe	4 V	5	Klausur	90	Deutsch/ Englisch
WZ1105	Ökobilanzierung Nachwachsender Rohstoffe	V	SoSe	4 V	5	Klausur	90	Deutsch/ Englisch
WZ1102	Nachwachsende Rohstoffe und Agrarökosysteme	V	SoSe	4 V	5	Klausur	120	Deutsch/ Englisch
WZ1103	Einführung in die Ökonomie Nachwachsender Rohstoffe	V	WiSe	4 V	5	Klausur	120	Deutsch/ Englisch
WZ1180	Einführung Energiewandlung & Energiewirtschaft	VÜ	WiSe	2 V 2 Ü	5	Klausur	60	Deutsch/ Englisch
WZ1101	Einführung in die stoffliche Nutzung	VÜ	WiSe	2 V 2 Ü	5	Klausur	60	Deutsch/ Englisch

			Wiss. Aus-		Deutsch
Master's Thesis		30			oder
			arbeitung		Englisch

^{***}Das Masterseminar wird an der Universität für Bodenkultur Wien angeboten. Als gleichwertig gilt das Modul Methodenseminar WZ1959, das von der Technischen Universität München angeboten wird.

^{**}Die Pflichtmodule und -veranstaltungen können sowohl an der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit als auch an der Universität für Bodenkultur Wien besucht werden. In Wien werden hierfür verschiedene Vorlesungen zu Themenblöcken zusammengefasst, die äquivalenten Modulen in Straubing entsprechen.

Wahlmodule:

Im Wahlbereich sind insgesamt 46 Credits in den Bereichen Nachwachsende Rohstoffe und Anbausysteme, chemisch-werkstoffliche Nutzung von Biomasse, energetische Nutzung von Biomasse, Umwelt und Ökologie und Ökonomie der nachwachsenden Rohstoffe zu erbringen. Diese können sowohl an der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit als auch an der Universität für Bodenkultur Wien belegt werden.

Die nachfolgende beispielhafte Liste der Wahlmodule des Technische Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit und der Universität für Bodenkultur, Wien wird vor jedem Semester aktualisiert und vor Vorlesungsbeginn durch den Prüfungsausschuss bekannt gegeben.

Daneben sind 12 Credits allgemeine Wahlmodule bzw. -veranstaltungen, die aus dem gesamten Angebot der Technischen Universität München oder der Universität für Bodenkultur Wien belegt werden können, zu erbringen.

Sind mindestens 30 Credits aus einem Schwerpunkt gewählt und wird die Master's Thesis mit einem Thema aus diesem Schwerpunkt erstellt, so wird dieser Schwerpunkt im Transcript of Records aufgeführt.

Wahlmodule aus dem Bereich Nachwachsende Rohstoffe und Anbausysteme der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit

Nr.	Modul- bezeichnung	Lehrform	Sem.	sws	Credits	Prüfungs- art	Prüfungs- dauer	Gewich- tungs- faktor	Unter- richts- sprache
CS0006	Genetic Engineering and Synthetic Biology	VÜ		2V, 2Ü	5	Klausur + Präsentation (SL)	90		Englisch
CS0016	Methods of Synthetic Biology	Р	WiSe	5 P	5	Labor- leistung			Deutsch/ Englisch
CS0017	Regulation of Microbial Metabolism	V	SoSe	2 V	3	Klausur	60		Deutsch/ Englisch
WZ1115	Agroforstsysteme	VI	SoSe	4 VI	5	Klausur	90		Deutsch
WZ1120	Medicinal and Spice Plants	VÜ	WiSe	2 V 2 Ü	5	Klausur	90		Deutsch/ Englisch
WZ1290	Biological materials in nature and technology	V	SoSe	4 V	5	Klausur	90		Deutsch
WZ 1193	Biogas Technology	VÜ	SoSe	2,5V, 1Ü	5	Klausur	60		Englisch
CS0155	Nawaro in Kommunikation und Didaktik	VÜ	WiSe	2 V 2 Ü	5	Präsentation + Bericht		4:1	Deutsch
WZ1192	Forschungs- praktikum	Р		4	5	Wiss. Aus- arbeitung			Deutsch/ Englisch

Wahlveranstaltungen aus dem Bereich Nachwachsende Rohstoffe und Anbausysteme der Universität für Bodenkultur Wien

Nr.	Veranstaltungs- bezeichnung	Lehrform	Sem.	sws	Credits	Prüfungs- art	Prüfungs- dauer	Gewich- tungs- faktor	Unter- richts- sprache
WZ 9458BOK	Spezieller Pflanzenbau	VÜ	WiSe	2 V 1 Ü	4	Mündlich	30		Deutsch
WZ 9422BOK	Technik der Biomasse und Wirtschaftsdünger- nutzung	VÜ	WiSe	1 V 1Ü	3	Klausur	60		Deutsch
WZ 9465BOK	Plant and Environment (in Eng.)	V	WiSe	2 V	3	Klausur	60		Englisch
WZ 9466BOK	Soil protection	V	SoSe	2 V	3	Klausur	60		Englisch
WZ 9467BOK	Gebirgswaldbau	V	SoSe	2 V	2	Klausur	60		Deutsch
WZ 9468BOK	Waldbodenbiologie (in Eng.)	VÜ	WiSe	1 V 1Ü	3	SL, Präsentation			Englisch
WZ 9469BOK	Naturschutzaspekte des Waldschutzes	V	WiSe	1 V	1	Mündlich	30		Deutsch
WZ 9045BOK	Aspects of product quality in plant production (in Eng.)	V	WiSe	4 V	4	Klausur	60		Englisch
WZ 9471BOK	Medicinal and aromatic plants (in Eng.)	V	WiSe	2 V	3	Mündlich	30		Englisch
WZ 9420BOK	Energieholzbereit- stellungssysteme	VÜ	WiSe	1 V 1 Ü	3	Klausur + Bericht	60	1:1	Deutsch
WZ 9473BOK	Aktuelle und zukunftsorientierte Themen des Waldbaus	V	WiSe	2 V	2	Klausur	60		Deutsch
WZ 9474BOK	Agricultural Engineering in Plant Productionseminar (in Eng.)	Ü	SoSe	3 Ü	4	Bericht + Präsentation		1:1	Englisch

Wahlveranstaltungen aus dem Bereich Umwelt und Ökologie der Universität für Bodenkultur Wien

Nr.	Veranstaltungs- bezeichnung	Lehrform	Sem.	sws	Credits	Prüfungs- art	Prutunas-	Gewich- tungs- faktor	Unter- richts- sprache
WZ 9475BOK	Entsorgungstechnik	V	SoSe	3 V	3	Klausur	60		Deutsch
WZ 9476BOK	Umwelttechnik in der Holzindustrie	VÜ	SoSe	1 V 1 Ü	2	Klausur	60		Deutsch
WZ 9426BOK	Umweltrecht	V	WiSe	2 V	3	Klausur + Mündlich	90, 30	1:1	Deutsch

WZ 9478BOK	Qualitätsbeurteilung von Wasser und Abwasser	VÜ	SoSe	1,5 V 1,5 Ü	4,5	Klausur + Präsentation	60	1:1	Deutsch
WZ 9479BOK	Ökologie	V	WiSe	2 V	3	Klausur	60		Deutsch
WZ 9419BOK	Crop production systems in organic agriculture (in Eng.)	VÜ	WiSe	1 V 1 Ü	3	Klausur	60		Englisch
WZ 9481BOK	Globaler Wandel und Ökosysteme	V	WiSe	2 V	3	Klausur	60		Deutsch
WZ 9482BOK	Seminar in global change and ecosystems (in Eng.)	Ü	WiSe	1 Ü	2	Präsentation			Englisch

Wahlmodule aus dem Bereich der chemisch-werkstofflichen Nutzung von Biomasse der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit

CS0008	Enzyme Engineering	VΡ		2 V 2 P	5	Klausur + Bericht	60	2:1	Englisch
CS0006	Genetic Engineering and Synthetic Biology	V S		2 V 2 S	5	Klausur + Präsentation (SL)	90		Englisch
CS0016	Methods of Synthetic Biology	Р	WiSe	5 P	5	Labor			Deutsch/ Englisch
CS0017	Regulation of Microbial Metabolism	V	SoSe	2 V	3	Klausur	60		Deutsch/ Englisch
CS0019	Chemistry of Enzymes	V S		2 V 1 S	5	Klausur	60		Englisch
CS0020	Glycomics	VÜ	SoSe	1 V 2 Ü	3	Klausur	60		Deutsch/ Englisch
WZ1191	Phytopharmaceuticals and natural products	VΡ	SoSe	2 V 1 P	5	Klausur	60		Deutsch
CS0021	Surface Chemistry	VÜ	WiSe	1 V 0,5 Ü	3	Klausur	60		Deutsch
WZ1157	Sustainable Chemistry	VS	SoSe	2 V 1 S	5	Klausur + Präsentation (SL)	60		Deutsch/ Englisch
CS0010	Advanced Downstream Processing	VÜ		2 V 2 Ü	5	Klausur	60		Englisch
CS0022	Electrolyte thermodynamics	VÜ	WiSe	1,5 V 0,5 Ü	3	Mündlich	25		Englisch
CS0023	Gas-based bioprocesses	VÜ		2 V	3	Klausur	60		Deutsch/ Englisch
WZ1189	Mechanical process engineering	VÜ	WiSe	2 V 2 Ü	5	Klausur	60		Deutsch
CS0024	Electrobiotechnology	VÜ		2 V 2 Ü	5	Klausur	90		Englisch
WZ1290	Biological materials in nature and technology	V	SoSe	4 V	5	Klausur	90		Deutsch
WZ1210	Materials science of renewable resources	VÜ	WiSe	2 V 1 Ü	3	Klausur	90		Deutsch
CS0025	Advanced Analytics for Biotechnology	VS	SoSe	2 V 1 S	5	Klausur + Präsentation (SL)	60		Englisch

CS0026	Advanced Concepts of Bioinformatics	VI	SoSe	4 VI	5	Klausur	90	Englisch
CS0009	Enzymatic Biotransformations	VÜ	WiSe	2 V 1 Ü	5	Klausur	90	Englisch
WZ1197	Forschungspraktikum "Nachwachsende Rohstoffe und Anbausysteme"	Р		4	5	Wiss. Aus- arbeitung		Deutsch/ Englisch

Wahlveranstaltungen aus dem Bereich der chemisch-werkstofflichen Nutzung von Biomasse der Universität für Bodenkultur Wien

Nr.	Veranstaltungs- bezeichnung	Lehrform	Sem.	sws	Credits	Prüfungs- art	Prüfungs- dauer	Gewich- tungs- faktor	Unter- richts- sprache
WZ9483 BOK	Bioniktechnische Lösungen aus der Natur	V	WiSe	2 V	2	Klausur	60		Deutsch
WZ9484 BOK	Verfahrenstechnik für Nawaros	V	WiSe	2 V	2	Klausur	60		Deutsch
WZ9431 BOK	Biobasierte und biologisch abbaubare Kunststoffe	V	WiSe	2 V	2	Klausur	60		Deutsch
WZ9486 BOK	Wood and Fibre Quality (in Eng.)	V	WiSe	2 V	2	Klausur + Mündlich	90, 30	1:1	Englisch
WZ9487 BOK	Naturfaserrohstoffe	V	SoSe	2 V	2	Klausur	60		Deutsch
WZ9488 BOK	Polymerchemie und Technologie	V	WiSe	2 V	2	Klausur + Mündlich	90, 30	1:1	Deutsch
WZ9489 BOK	Chemie und Technologie nachwachsender Rohstoffe (in Eng.)	V	WiSe	2 V	2	Klausur + Mündlich	90, 30	1:1	Englisch
WZ9490 BOK	Processes in Enzyme Technology (in Eng.)	V	WiSe	2 V	2	Mündlich	30		Englisch
WZ9491 BOK	Biochemische Technologie (in Eng.)	V	SoSe	2 V	2	Klausur + Mündlich	90, 30	1:1	Englisch
WZ9492 BOK	Holzbiotechnologie	VÜ	SoSe	1 V 1 Ü	2	Klausur	60		Deutsch
WZ9389 BOK	Naturstofftechnologien und Eigenschaften	Р	WiSe	3 P	4	Projektarbeit			Deutsch
WZ9494 BOK	Mikrobiologie	V	WiSe	2 V	2	Klausur	60		Deutsch
WZ9495 BOK	Mechanical and thermal process technology II (in Eng.)	VÜ	WiSe	1,5 V 1,5 Ü	3	Klausur, Labor- leistungen	60		Englisch
WZ9496 BOK	Wood-Industrial Processes: Wood- and Fibre-based Materials (in Eng.)	V	WieS	2 V	2	Mündlich	30		Englisch

WZ9497 BOK	Engineered wood products (in Eng.)	V	WiSe	2 V	2	Klausur + Mündlich	90, 30	1:1	Englisch
WZ9498 BOK	Composite (in Eng.)	V	WiSe	2 V	2	Klausur	60		Englisch
WZ9499 BOK	Charakterisierung von Holz und Faserwerkstoffen	VÜ	SoSe	1 V 1 Ü	2	Labor- leistungen			Deutsch
WZ9500 BOK	Zerspanungs- und Formgebungstechnik	V	WiSe	2 V	2	Klausur	60		Deutsch
WZ 9512 BOK	Technologien der Holzverarbeitung	Ü	WiSe	1 Ü	2	Klausur, Labor- leistungen	30		Deutsch

Wahlmodule aus dem Bereich energetische Nutzung von Biomasse der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit:

Nr.	Modulbezeichnung	Lehrform	Sem.	sws	Credits	Prüfungs- art	Prüfungs- dauer	Gewich- tungs- faktor	Unter- richts- sprache
CS0132	Energy process engineering	V, Ü	WiSe	2V 3Ü	6	Klausur	90		Englisch
CS0133	Mechanical process engineering	V, Ü	WiSe	2V, 2Ü	6	Klausur	90		Englisch
CS0136	Energetic use of biomass and residuals	V, Ü	SoSe	2V, 2Ü	6	Klausur	60		Englisch
CS0105	Modelling and Optimization of Energy Systems	V	WiSe	4V	6	Klausur	90		Englisch
CS0139	Flowsheet balancing and simulation	Ü	WiSe	4Ü	5	Übungs- leistung			Englisch
CS0141	Machine Learning	V, Ü	SoSe	2V, 2Ü	5	Klausur	90		Englisch
CS0142	Detail Process Engineering	V, Ü	SoSe	2V, 2Ü	5	Klausur	90		Englisch
WZ1180	Energy and Economics	V, Ü	WiSe	3V, 1Ü	5	Klausur	60		Deutsch
CS0092	Wind Power	V, Ü	SoSe	1,5V, 1Ü	4	Klausur	60		Englisch
CS0143	Hydropower	V	SoSe	3V	4	Klausur	60		Deutsch
WZ1128	Geothermal Energy Systems	V	WiSe	4V	5	Klausur	90		Englisch
WZ1132	Forschungspraktikum	Р		4	5	Wiss. Aus- arbeitung			Deutsch/ Englisch

Wahlveranstaltungen aus dem Bereich energetische Nutzung von Biomasse der Universität für Bodenkultur Wien

Nr.	Veranstaltungs- bezeichnung	Lehrform	Sem.	sws	Credits	Prüfungs- art	Prüfungs- dauer	Gewich- tungs- faktor	Unter- richts- sprache
WZ9513B OK	Energy engineering (in Eng.)	\ \	SoSe	2 V	3	Klausur	60		Englisch
WZ9514B OK	Elektrische Energietechnik	V	SoSe	2 V	3	Klausur	60		Deutsch
WZ9515B OK	Energiewirtschaft	V	WiSe	3 V	3	Klausur	60		Deutsch
WZ9516B OK	Renewable energy resources (in Eng.)	V	WiSe	2 V	3	Mündlich	30		Englisch
WZ9517B OK	Applied measurement and control systems (in Eng.)	VÜ	WiSe	1 V 1 Ü	3	Bericht + Präsentation	30	1:1	Englisch
WZ9518B OK	Practical course in energy engineering (in Eng.)	Р	WiSe	3 P	3	Bericht + Klausur	30	1:1	Englisch
WZ9519B OK	Energieraumplanung	VÜ	SoSe	1 V 1 Ü	3	Bericht + Mündlich	30	1:1	Deutsch
WZ9520B OK	Zukünftige Energieversorgung in Abhängigkeit der Ressourcen- verfügbarkeit	Ü	WiSe	2 Ü	3	Bericht			Deutsch
WZ9382B OK	Brenn- und Kraftstoffe	\ \	WiSe	1,5 V	2	Mündlich	30		Deutsch
WZ9388B OK	Biogastechnologie	VÜ	WiSe	1 V 1 Ü	3	Klausur + Bericht	60	1:1	Deutsch
WZ9523B OK	Energiewirtschaftliches Seminar	Ü	WiSe + SoSe	4 Ü	6	Projektarbeit			Deutsch

Wahlmodule aus dem Bereich Ökonomie Nachwachsender Rohstoffe der Technischen Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit

Nr.	Modul- bezeichnung	Lehrform	Sem.	sws	Credits	Prüfungsart	Prüfungsdauer	Gew faktor	Unterrichts- sprache
CS0111	Advanced Development Economics	2 V 2 Ü	WiSe	4	6	Klausur	60		Englisch
CS0114	International Trade	2 V 2 Ü	WiSe	4	6	Klausur	60		Englisch
CS0116	Markets for Energy and Biobased Products	3 V 1 Ü	SoSe	4	6	Mündlich + Präsentation	20	7:3	Englisch
CS0122	Personnel and Organizational Economics	2 V 2 Ü	SoSe	4	6	Klausur	90		Englisch
CS0117	Consumer Studies	2 V 2 Ü	SoSe	4	6	Mündlich + Präsentation	20	1:1	Englisch
CS0113	Innovation in Bioeconomy	2 V 2 Ü	WiSe	4	6	Klausur	90		Englisch
CS0128	Corporate Sustainability Management	1 V 3 Ü	WiSe	4	6	Klausur + Präsentation	60	3:1	Englisch
CS0125	Plant and Technology Management	2 V 2 Ü	SoSe	4	6	Klausur	90		Englisch
CS0112	Advanced Seminar in Supply and Value Chain Management	4Ü	SoSe	4	7	Präsentation + wiss. Ausarbeitung		1:1	Englisch
CS0126	Advanced Seminar in Circular Economy and Sustainability Management	4Ü	WiSe	4	7	Präsentation + wiss. Ausarbeitung		1:2	Englisch
CS0123	Advanced Seminar in Behavioral Economics	4Ü	WiSe	4	7	Präsentation + wiss. Ausarbeitung		1:2	Englisch
CS0118	Environmental Accounting in Economics and Sustainability Sciences	2V , 2VI	WiSe	4	6	Klausur	90		Englisch
WZ1194	Forschungs- praktikum	Р		4	5	wiss. Aus- arbeitung			Deutsch/ Englisch

Wahlveranstaltungen aus dem Bereich Ökonomie Nachwachsender Rohstoffe der Universität für Bodenkultur Wien

Nr.	Veranstaltungs- bezeichnung	Lehrform	Sem.	sws	Credits	Prüfungs- art	Prüfungs- dauer	Gewich- tungs- faktor	Unter- richts- sprache
WZ9524B OK	Marktforschung und Marktanalyse	VÜ	SoSe	1 V 1 Ü	3	Mündlich + Bericht	30	1:1	Deutsch
WZ9525B OK	Marketing und Innovationsstrategien	V	WiSe	2 V	2	Klausur	60		Deutsch
WZ9521B OK	Betriebliche Umweltökonomie	>	SoSe	2 V	3	Klausur	60		Deutsch
WZ9522B OK	Landwirtschaftliche Betriebswirtschafts- lehre I	٧	WiSe	2 V	3	Klausur	60		Deutsch
WZ9435B OK	Resource and Environmental Economics (in Eng.)	V	SoSe	2 V	3	Klausur	60		Englisch
WZ9493B OK	Ökonomik nachhaltiger Landnutzung im Globalen Wandel	V	SoSe	2 V	3	Klausur	60		Deutsch
WZ9485B OK	Unternehmensnetz- werke (Logistik)	VÜ	SoSe	2 V 2 Ü	6	Klausur	60		Deutsch
WZ9477B OK	Unternehmensführung I	VÜ	WiSe	1 V 1 Ü	3	Bericht + Präsentation		1:1	Deutsch
WZ9526B OK	Logistik in der Forst- und Holzwirtschaft	Ü	SoSe	2 Ü	3	Übungs- leistung			Deutsch
WZ9383B OK	Beschaffung	V	WiSe	1 V	1	Klausur	60		Deutsch
WZ9385B OK	Wirtschafts- und sozialwissenschaftliche Umfrageforschung	Ü	SoSe	2 Ü	3	Bericht + Präsentation			Deutsch
WZ9472B OK	Qualitative Methoden in den Wirtschafts- und Sozialwissenschaften	VÜ	WiSe	1 V 1 Ü	3	Übungs- leistung			Deutsch

Allgemeinbildende fächerübergreifende Wahlmodule aus dem Gesamtbereich der Technischen Universität München oder der Universität für Bodenkultur Wien: Im freien Wahlbereich sind Wahlmodule im Umfang von 12 Credits zu erbringen:

Der Prüfungsausschuss aktualisiert fortlaufend den Fächerkatalog der Wahlmodule und -veranstaltungen. Änderungen werden spätestens zu Beginn des Semesters auf den Internetseiten des Prüfungsausschusses bekannt gegeben.

Erläuterungen:

Sem. = Semester; SWS = Semesterwochenstunden; V = Vorlesung; Ü = Übung; P = Praktikum; S = Seminar; VI = Vorlesung mit integrierter Übung

In der Spalte Prüfungsdauer ist bei schriftlichen und mündlichen Prüfungen die Prüfungsdauer in Minuten aufgeführt.

Creditbilanz der jeweiligen Semester:

Semester	Credits Pflichtmodule bzwveranstal- tungen	Credits Wahlmodule bzwveran- staltungen	Credits allgemeine Wahlmodule bzwveran- staltungen	Credits Master's Thesis	Gesamt- Credits	Anzahl der Prüfungen
1	15	15			30	6
2	10	15	6		31	6
3	7	16	6		29	6
4	0	0		30	30	1

Anlage 2: Eignungsverfahren

Eignungsverfahren für den gemeinsamen Masterstudiengang Biomassetechnologie der Technischen Universität München und der Universität für Bodenkultur Wien

1. Zweck des Verfahrens

¹Die Qualifikation für den gemeinsamen Masterstudiengang Biomassetechnologie setzt neben den Voraussetzungen des § 36 Abs. 1 Nr. 1 und Nr. 2 den Nachweis der Eignung gemäß § 36 Abs. 1 Nr. 3 nach Maßgabe der folgenden Regelungen voraus. ²Die besonderen Qualifikationen und Fähigkeiten der Bewerber bzw. Bewerberinnen sollen dem Berufsfeld der Ingenieur-, Natur-, Agrar- oder Forstwissenschaften entsprechen. ³Einzelne Eignungsparameter sind:

- 1.1 Fähigkeit zu wissenschaftlicher bzw. grundlagen- und methodenorientierter Arbeitsweise,
- 1.2 vorhandene Fachkenntnisse aus dem Erststudium in einem natur-, ingenieur-, agrar-, oder forstwissenschaftlichen Studiengang,
- 1.3 besondere Bereitschaft, anwendungs- und praxisbezogene Fragestellungen zu bearbeiten,
- 1.4 überzeugende Kommunikationsfähigkeiten, vor allem Präsentations- und Argumentationsfähigkeiten.

2. Verfahren zur Prüfung der Eignung

- 2.1 Das Verfahren zur Prüfung der Eignung wird halbjährlich durch den Technische Universität München Campus Straubing für Biotechnologie und Nachhaltigkeit und die Universität für Bodenkultur Wien durchgeführt.
- 2.2 ¹Die Anträge auf Durchführung des Eignungsverfahrens sind zusammen mit den Unterlagen nach 2.3.1 bis einschließlich 2.3.5 sowie § 36 Abs. 1 Nr. 2 für das Wintersemester im Online-Bewerbungsverfahren bis zum 31. Mai und für das Sommersemester bis zum 15. Januar an die Technische Universität München zu stellen (Ausschlussfristen). ²Die Urkunde und das Zeugnis als Nachweis über das Bestehen des Bachelorstudiengangs müssen dem TUM Center for Study and Teaching Bewerbung und Immatrikulation bis spätestens fünf Wochen nach Vorlesungsbeginn vorgelegt werden. ³Andernfalls ist die Aufnahme des Masterstudiengangs gemäß § 36 dieser Satzung noch nicht möglich."
- 2.3 Dem Antrag sind beizufügen:
- 2.3.1 ein Transcript of Records mit Modulen im Umfang von mindestens 140 Credits; das Transcript of Records muss von der zuständigen Prüfungsbehörde oder dem zuständigen Studiensekretariat ausgestellt sein,
- 2.3.2 das dem Erststudium zugrundeliegende Curriculum aus dem die jeweiligen Modulinhalte und die vermittelten Kompetenzen hervorgehen müssen (z.B. Modulhandbuch, Modulbeschreibungen) sowie das vom TUM Campus Straubing für Biotechnologie und Nachhaltigkeit herausgegebene Formular, in dem die Bewerber und Bewerberinnen die Noten, Credits sowie Semesterwochenstunden der geforderten Prüfungsleistungen zusammenstellen,
- 2.3.3 ein tabellarischer Lebenslauf,
- 2.3.4 eine in englischer oder deutscher Sprache verfasste schriftliche Begründung von maximal ein bis zwei DIN-A4 Seiten für die Wahl des gemeinsamen Masterstudiengangs Biomassetechnologie an der Technischen Universität München und der Universität für Bodenkultur Wien, in der die Bewerber oder Bewerberinnen die besondere Leistungsbereitschaft darlegen, aufgrund welcher sie sich für den gemeinsamen Masterstudiengang Biomassetechnologie für besonders geeignet halten; die besondere Leistungsbereitschaft ist beispielsweise durch Ausführungen zu studiengangspezifischen Berufsausbildungen, Praktika, Auslandsaufenthalten oder über eine erfolgte fachgebundene Weiterbildung im Bachelorstudium, die über Präsenzzeiten und Pflichtveranstaltungen hinaus gegangen ist, zu begründen; dies ist ggf. durch Anlagen zu belegen,

2.3.5 eine Versicherung, dass die Begründung für die Wahl des Studiengangs selbstständig und ohne fremde Hilfe angefertigt wurde und die aus fremden Quellen übernommenen Gedanken als solche gekennzeichnet sind.

3. Kommission zum Eignungsverfahren, Auswahlkommissionen

- 3.1 ¹Das Eignungsverfahren wird von der Kommission zum Eignungsverfahren und den Auswahlkommissionen durchgeführt. ²Der Kommission zum Eignungsverfahren obliegt die Vorbereitung des Verfahrens, dessen Organisation und die Sicherstellung eines strukturierten und standardisierten Verfahrens zur Feststellung der Eignung im Rahmen dieser Satzung; sie ist zuständig, soweit nicht durch diese Ordnung oder Delegation eine andere Zuständigkeit festgelegt ist. ³Die Durchführung des Verfahrens gemäß Nr. 5 vorbehaltlich Nr. 3.2. Satz 11 obliegt den Auswahlkommissionen.
- 3.2 ¹Die Kommission zum Eignungsverfahren besteht aus fünf Mitgliedern. ²Diese werden durch den Rektor oder die Rektorin im Benehmen mit dem Studiendekan oder der Studiendekanin aus dem Kreis der am Studiengang beteiligten prüfungsberechtigten Mitglieder des Integrative Research Center TUM Center für Biotechnologie und Nachhaltigkeit bestellt. ³Mindestens drei der Kommissionsmitglieder müssen Hochschullehrer oder Hochschullehrerinnen im Sinne des BayHSchPG sein. ⁴Die Fachschaft hat das Recht, einen studentischen Vertreter oder eine studentische Vertreterin zu benennen, der oder die in der Kommission beratend mitwirkt. ⁵Für jedes Mitglied der Kommission wird je ein Stellvertreter oder eine Stellvertreterin bestellt. 6Die Kommission wählt aus ihrer Mitte einen Vorsitzenden oder eine Vorsitzende und den stellvertretenden Vorsitzenden oder eine stellvertretende Vorsitzende. ⁷Für den Geschäftsgang gilt § 30 der Grundordnung der TUM in der jeweils geltenden Fassung. 8Die Amtszeit der Mitglieder beträgt ein Jahr. ⁹Verlängerungen der Amtszeit und Wiederbestellungen sind möglich. ¹⁰Unaufschiebbare Eilentscheidungen kann der oder die Vorsitzende anstelle der Kommission zum Eignungsverfahren treffen; hiervon hat er oder sie der Kommission unverzüglich Kenntnis zu geben. ¹¹Das Studienbüro unterstützt die Kommission zum Eignungsverfahren und die Auswahlkommissionen; die Kommission zum Eignungsverfahren kann dem Studienbüro die Aufgabe der formalen Zulassungsprüfung gemäß Nr. 4 sowie der Punktebewertung anhand vorher definierter Kriterien übertragen, bei denen kein Bewertungsspielraum besteht, insbesondere die Umrechnung der Note sowie die Feststellung der erreichten Gesamtpunktzahl, sowie die Zusammenstellung der Auswahlkommissionen aus den von der Kommission bestellten Mitgliedern und die Zuordnung zu den Bewerberinnen und Bewerbern.
- 3.3 ¹Die Auswahlkommissionen bestehen jeweils aus zwei Mitgliedern aus dem Kreis der nach Art. 62 Abs. 1 Satz 1 BayHSchG in Verbindung mit der Hochschulprüferverordnung im Studiengang prüfungsberechtigten Mitgliedern des Integrative Research Center TUM Center für Biotechnologie und Nachhaltigkeit. ²Mindestens ein Mitglied muss Hochschullehrer oder Hochschullehrerin im Sinne des BayHSchPG sein. ³Die Tätigkeit als Mitglied der Kommission zum Eignungsverfahren kann neben der Tätigkeit als Mitglied der Auswahlkommission ausgeübt werden. ⁴Die Mitglieder werden von der Kommission zum Eignungsverfahren für ein Jahr bestellt; Nr. 3.2. Satz 9 gilt entsprechend. ⁵Je Kriterium und Stufe können jeweils unterschiedliche Auswahlkommissionen eingesetzt werden.

4. Zulassung zum Eignungsverfahren

- 4.1 Die Durchführung des Eignungsverfahren setzt voraus, dass die in Nr. 2.2 genannten Unterlagen form- und fristgerecht sowie vollständig vorliegen.
- 4.2 ¹Wer die erforderlichen Voraussetzungen nach Nr. 4.1 erfüllt, wird im Eignungsverfahren gemäß Nr. 5 geprüft. ²Andernfalls ergeht ein mit Gründen und Rechtsbehelfsbelehrung versehener Ablehnungsbescheid.

5. Durchführung des Eignungsverfahrens

5.1 Erste Stufe der Durchführung des Eignungsverfahrens

5.1.1 ¹Es wird anhand der gemäß Nr. 2.3 geforderten schriftlichen Bewerbungsunterlagen beurteilt, ob die Bewerber oder Bewerberinnen die Eignung zum Studium gemäß Nr. 1 besitzen (Erste Stufe der Durchführung des Eignungsverfahrens). ²Die eingereichten Unterlagen werden auf einer Skala von 0 bis 100 Punkten bewertet, wobei 0 das schlechteste und 100 das beste zu erzielende Ergebnis ist.

³Folgende Bewertungskriterien gehen ein:

a) Fachliche Qualifikation

¹Die curriculare Analyse der vorhandenen Fachkenntnisse erfolgt dabei nicht durch schematischen Abgleich der Module, sondern auf der Basis von Kompetenzen. ²Sie orientiert sich an den in den folgenden Tabellen aufgelisteten elementaren Fächergruppen, die entweder für Bachelorabsolventen oder Bachelorabsolventinnen ingenieurwissenschaftlichen Bachelorabsolventen oder Studiengangs, für Bachelorabsolventinnen eines naturwissenschaftlichen Studiengangs, für Bachelorabsolventen oder Bachelorabsolventinnen aus den Agrar- und Forstwissenschaften berücksichtigt werden.

Fächergruppen Bachelor Ingenieurwissenschaften:

- A) Grundlagen des Ingenieurwesens (Mathematik, Technische Mechanik, Maschinenzeichnen, Werkstoffkunde, Apparate-/Anlagenbau)
- B) Prozesstechnische Grundlagen (Thermodynamik, Wärme- und Stofftransport, Mechanische Verfahrenstechnik, Thermische Verfahrenstechnik, Reaktionstechnik, Bioverfahrenstechnik)

Fächergruppe Bachelor Naturwissenschaften:

Naturwissenschaftliche Grundlagen (Mathematik, Physik, Chemie, Physikalische Chemie, Biologie)

Fächergruppen Bachelor Agrar- und Forstwissenschaften:

Agrarwissenschaftliche Grundlagen (forstwissenschaftliche Grundlagen, ökologische Grundlagen)

³Wenn festgestellt wurde, dass keine wesentlichen Unterschiede zu den entsprechenden Studiengängen der Technischen Universität München hinsichtlich der erworbenen Kompetenzen (Lernergebnisse) bestehen, werden maximal 60 Punkte vergeben. ⁴Fehlende Kompetenzen werden entsprechend den Credits der zugehörigen Module des entsprechenden Bachelorstudiengangs der Technischen Universität München abgezogen. ⁵Ist dieser Wert nicht ganzzahlig, so wird dieser zugunsten des Bewerbers oder der Bewerberin auf die nächsthöhere Zahl aufgerundet.

b) Abschlussnote

¹Für jede Zehntelnote, die der über Prüfungsleistungen im Umfang von 140 Credits errechnete Schnitt besser als 3,0 ist, wird ein Punkt vergeben. ²Die Maximalpunktzahl beträgt 20. ³Negative Punkte werden nicht vergeben. ⁴Bei ausländischen Abschlüssen wird die über die bayerische Formel umgerechnete Note herangezogen.

⁵Liegt zum Zeitpunkt der Bewerbung ein Abschlusszeugnis mit mehr als 140 Credits vor, erfolgt die Bewertung auf der Grundlage der am besten benoteten Module im Umfang von 140 Credits. ⁶Es obliegt den Bewerbern und Bewerberinnen, diese im Rahmen des Antrags aufzulisten sowie die Richtigkeit der gemachten Angaben schriftlich zu versichern.

⁷Insoweit dies erfolgt, wird der Schnitt aus den besten benoteten Modulprüfungen im Umfang von 140 Credits errechnet; fehlen diese Angaben wird die von dem Bewerber oder der Bewerberin vorgelegte Gesamtdurchschnittsnote herangezogen. ⁸Der Gesamtnotenschnitt wird als gewichtetes Notenmittel der Module errechnet. ⁹Die Notengewichte der einzelnen Module entsprechen den zugeordneten Credits.

c) Begründungsschreiben

¹Die schriftliche Begründung wird von den Auswahlkommissionsmitgliedern auf einer Skala von 0 bis 20 Punkten bewertet. ²Der Inhalt des Begründungsschreibens wird nach folgenden Kriterien bewertet:

- 1. Das Bewerbungsanliegen kann sachlich formuliert werden.
- 2. Der Zusammenhang zwischen persönlichen Interessen und Inhalten des Studiengangs kann gut strukturiert dargestellt werden.
- 3. Die besondere Eignung und Leistungsbereitschaft für den Masterstudiengang kann durch Argumente und sinnvolle Beispiele (siehe 2.3.4) überzeugend begründet werden.
- 4. Die wesentlichen Punkte der Begründung können in angemessener Weise sprachlich hervorgehoben werden.

³Die beiden Auswahlkommissionsmitglieder bewerten unabhängig jedes der vier Kriterien, wobei die Kriterien gleich gewichtet werden. ⁴Die Punktzahl ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen, wobei auf ganze Punktzahlen aufgerundet wird.

- 5.1.2 ¹Die Punktzahl der ersten Stufe ergibt sich aus der Summe der Einzelbewertungen. ²Nicht verschwindende Kommastellen sind aufzurunden.
- 5.1.3 Wer mindestens 70 Punkte erreicht hat, erhält eine Bestätigung über das bestandene Eignungsverfahren. ²In Fällen, in denen festgestellt wurde, dass nur einzelne fachliche Voraussetzungen aus dem Erststudium nicht vorliegen, kann die Auswahlkommission zum Eignungsverfahren als Auflage fordern, Grundlagenprüfungen aus dem Bachelorstudiengang Biomassetechnologie im Ausmaß von maximal 30 Credits abzulegen. ³Diese Grundlagenprüfungen müssen im ersten Studienjahr erfolgreich abgelegt werden. 4Nicht bestandene Grundlagenprüfungen dürfen innerhalb dieser Frist nur einmal zum nächsten Prüfungstermin wiederholt werden. 5Der Prüfungsausschuss kann die Zulassung zu einzelnen Modulprüfungen vom Bestehen der Grundlagenprüfung abhängig machen.
- 5.1.4 Wer weniger als 40 Punkte erreicht hat, hat das Eignungsverfahren nicht bestanden.

5.2. Zweite Stufe der Durchführung des Eignungsverfahrens:

- 5.2.1 ¹Die übrigen Bewerber oder Bewerberinnen werden zu einem Eignungsgespräch eingeladen. ²Im Rahmen der zweiten Stufe des Eignungsverfahrens wird die im Erststudium erworbene Qualifikation und das Ergebnis des Eignungsgesprächs bewertet. ³Der Termin für das Eignungsgespräch wird mindestens eine Woche vorher bekannt gegeben. ⁴Zeitfenster für eventuell durchzuführende Eignungsgespräche müssen vor Ablauf der Bewerbungsfrist festgelegt sein. ⁵Der festgesetzte Termin des Gesprächs ist von den Bewerbern oder Bewerberinnen einzuhalten. ⁶Bei begründetem und bewilligtem Antrag ist ein Eignungsgespräch per Videokonferenz möglich. ⑦Der Bewerber oder die Bewerberin trägt das Risiko im Falle etwaiger technischer Probleme, es sei denn, diese sind von Seiten der Technischen Universität München zu vertreten. ³Wer aus von ihm oder ihr nicht zu vertretenden Gründen an der Teilnahme am Eignungsgespräch verhindert ist, kann auf begründeten Antrag einen Nachtermin bis spätestens zwei Wochen vor Vorlesungsbeginn erhalten.
- 5.2.2 ¹Das Eignungsgespräch ist für die Bewerber oder Bewerberinnen einzeln durchzuführen. ²Das Gespräch umfasst eine Dauer von mindestens 20 und höchstens 30 Minuten je Bewerber oder Bewerberin. ³Der Inhalt des Gesprächs erstreckt sich auf folgende Themenschwerpunkte:
 - besondere Leistungsbereitschaft und Eignung für den gemeinsamen Masterstudiengang Biomassetechnologie gemäß der unter Nr. 2.3.4 für die Beurteilung des Begründungsschreibens genannten Kriterien,
 - 2. grundlagen- und anwendungsbezogene Fragen aus dem Bereich der Biomassetechnologie zur Beurteilung der fachlichen Qualifikation,
 - 3. Allgemeinwissen zur aktuellen Situation der Nachwachsenden Rohstoffe.

- ⁴Gegenstand können auch die nach 2.3 eingereichten Unterlagen sein. ⁵Fachwissenschaftliche Kenntnisse, die erst in dem gemeinsamen Masterstudiengang Biomassetechnologie vermittelt werden sollen, entscheiden nicht. ⁶Mit Einverständnis der Bewerber oder Bewerberinnen kann ein Mitglied der Gruppe der Studierenden in der Zuhörerschaft zugelassen werden.
- 5.2.3 ¹Das Eignungsgespräch wird von der Auswahlkommission durchgeführt. ²Die Auswahlkommissionsmitglieder bewerten unabhängig jeden der drei Schwerpunkte, wobei die Schwerpunkte gleich gewichtet werden. ³Jedes der Auswahlkommissionsmitglieder hält das Ergebnis des Eignungsgesprächs auf der Punkteskala von 0 bis 50 fest, wobei 0 das schlechteste und 50 das beste zu erzielende Ergebnis ist. ⁴Die Punktzahl ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen. ⁵Nichtverschwindende Kommastellen sind aufzurunden.
- 5.2.4 ¹Die Gesamtpunktzahl der zweiten Stufe ergibt sich als Summe der Punkte aus 5.2.3 sowie der Punkte aus 5.1.1.a) (fachliche Qualifikation) und 5.1.1.b) (Abschlussnote). ²Wer 70 oder mehr Punkte erreicht hat, wird als geeignet eingestuft.
- 5.2.5 ¹Das von der Auswahlkommission festgestellte Ergebnis des Eignungsverfahrens wird ggf. unter Beachtung der in Stufe 1 nach Nr. 5.1.3 bereits festgelegten Auflagen schriftlich mitgeteilt. ²Der Bescheid ist von der Leitung der Hochschule zu unterzeichnen. ³Die Unterschriftsbefugnis kann delegiert werden. ⁴Ein Ablehnungsbescheid ist mit Begründung und einer Rechtsbehelfsbelehrung zu versehen.
- 5.2.6 Zulassungen im gemeinsamen Masterstudiengang Biomassetechnologie gelten bei allen Folgebewerbungen in diesem Studiengang.

6. Dokumentation

¹Der Ablauf des Eignungsverfahrens ist zu dokumentieren, insbesondere müssen aus der Dokumentation die Namen der an der Entscheidung beteiligten Personen, die Beurteilung der ersten und zweiten Stufe sowie das Gesamtergebnis ersichtlich sein. ²Über das Eignungsgespräch ist eine Niederschrift anzufertigen, in der Tag, Dauer und Ort der Feststellung, die Namen der Auswahlkommissionsmitglieder, die Namen der Bewerber oder Bewerberinnen sowie stichpunktartig die wesentlichen Themen des Gesprächs dargestellt sind.

7. Wiederholung

Wer das Eignungsverfahren nicht bestanden hat, kann sich einmal erneut zum Eignungsverfahren anmelden.